Water Science and Engineering 2018, 11(2) 120-130 DOI:   https://doi.org/10.1016/j.wse.2018.06.002  ISSN: 1674-2370 CN: 32-1785/TV

Current Issue | Archive | Search                                                            [Print]   [Close]
Information and Service
This Article
Supporting info
Service and feedback
Email this article to a colleague
Add to Bookshelf
Add to Citation Manager
Cite This Article
Email Alert
Submarine groundwater discharge (SGD)
Radium isotopes
Radium mass balance model
SGD-associated nutrient fluxes
Daya Bay
Jing-yan Gao
Xue-jing Wang
Yan Zhang
Hai-long Li
Article by Jing-yan Gao
Article by Xue-jing Wang
Article by Yan Zhang
Article by Hai-long Li

Estimating submarine groundwater discharge and associated nutrient inputs into Daya Bay during spring using radium isotopes

Jing-yan Gao a,b, Xue-jing Wang b,d, Yan Zhang c, Hai-long Li b,c, *

a School of Environment, Harbin Institute of Technology, Harbin 150001, China
b School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
c State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China
d School of Water Resources and Hydropower Engineering, Wuhan University, Wuhan 430072, China


Daya Bay, a semi-enclosed bay in the South China Sea, is well known for its aquaculture, agriculture, and tourism. In recent years, many environmental problems have emerged, such as the frequent (almost yearly) occurrence of harmful algal blooms and red tides. Therefore, investigations of submarine groundwater discharge (SGD) and associated nutrient inputs to this bay have important theoretical and practical significance to the protection of the ecological system. Such a study was conducted using short-lived radium isotopes 223Ra and 224Ra. The estimated SGD fluxes were 2.89 × 107 m3/d and 3.05 × 107 m3/d based on 223Ra and 224Ra, respectively. The average SGD flux was about 35 times greater than that of all the local rivers. The SGD-associated dissolved inorganic nitrogen (DIN) and dissolved inorganic phosphorus (DIP) fluxes ranged from 1.95 × 106 to 2.06 × 106 mol/d and from 5.72 × 104 to 6.04 × 104 mol/d, respectively. The average ratio of DIN to DIP fluxes in SGD was 34, much higher than that in local rivers (about 6.46), and about twice as large as the Redfield ratio (16). Our results indicate that SGD is a significant source of nutrients to the bay and may cause frequent occurrence of harmful algal blooms. This study provides baseline data for evaluating potential environmental effects due to urbanization and economic growth in this region.

Keywords Submarine groundwater discharge (SGD)   Radium isotopes   Radium mass balance model   SGD-associated nutrient fluxes   Daya Bay  
Received 2017-10-10 Revised 2018-01-17 Online: 2018-04-30 
DOI: https://doi.org/10.1016/j.wse.2018.06.002

This work was supported by the National Key Basic Research Program of China (973 Program, Grants No. 2015CB452901 and 2015CB452902), and the National Natural Science Foundation of China (Grant No. 41430641).

Corresponding Authors: Hai-long Li
Email: lihailong@sustc.edu.cn
About author:


Beck, A.J., Rapaglia, J.P., Cochran, J.K., Bokuniewicz, H.J., 2007. Radium mass-balance in Jamaica Bay, NY: Evidence for a substantial flux of submarine groundwater. Marine Chemistry, 106(3–4), 419-441. https://doi.org/10.1016/j.marchem.2007.03.008.


Brooks, D.A., Baca, M.W., Lo, Y.T., 1999. Tidal circulation and residence time in a macrotidal estuary: Cobscook Bay, Maine. Estuarine, Coastal and Shelf Science, 49(5), 647–665. https://doi.org/10.1006/ecss.1999.0544.


Burnett, W.C., Bokuniewicz, H., Huettel, M., Moore, W.S., Taniguchi, M., 2003. Groundwater and pore water inputs to the coastal zone. Biogeochemistry, 66(1-2), 3-33. https://doi.org/10.1023/b:biog.0000006066.21240.53.

Burnett, W. C., Dulaiova, H., 2003. Estimating the dynamics of groundwater input into the coastal zone via continuous radon-222 measurements. Journal of Environmental Radioactivity, 69(1-2), 21-35. https://doi.org/10.1016/S0265-931X(03)00084-5.

Charette, M.A., Breier, C.F., Henderson, P.B., Pike, S.M., Jayne, S.R., Buesseler, K.O., 2013. Radium-based estimates of cesium isotope transport and total direct ocean discharges from the Fukushima Nuclear Power Plant accident. Biogeosciences, 10(3), 2159-2167. https://doi.org/10.5194/bg-10-2159-2013.

Chen, J.Y., Taniguchi, M., Liu, G.Q., Miyaoka, K., Onodera, S., Tokunaga, T., Fukushima, Y., 2007. Nitrate pollution of groundwater in the Yellow River Delta, China. Hydrogeol J, 15(8), 1605-1614.

Destouni, G., Hannerz, F., Prieto, C., Jarsjö, J., Shibuo, Y., 2008. Small unmonitored nearcoastal catchment areas yielding large mass loading to the sea. Global Biogeochemical Cycles, 22(4), 1429-1443. https://doi.org/10.1029/2008gb003287.

Du, W.C., He, Y.Q., Zhang, G.X., 1994. A study on the quantity of pollutants in the dustfall entering the sea in Daya Bay. Tropical Oceanography, (4), 92-96.

Environmental Protection Department (EPD), 2016. Marine Water Quality Data. Environmental Protection Department (EPD), Hong Kong.

Garcia-Solsona, E., Garcia-Orellana, J., Masqué, P., Dulaiova, H., 2008. Uncertainties associated with 223Ra and 224Ra measurements in water via a delayed coincidence counter (RaDeCC). Marine Chemistry, 109(3–4), https://doi.org/10.1016/j.marchem.2007.11.006.

Gonneea, M.E., Morris, P.J., Dulaiova, H., Charette, M.A., 2008. New perspectives on radium behavior within a subterranean estuary. Marine Chemistry, 109(3–4), 250-267. https://doi.org/10.1016/j.marchem.2007.12.002.

Gonneea, M.E.,Charette, M.A., 2014. Hydrologic controls on nutrient cycling in an unconfined coastal aquifer. Environmental Science & Technology, 48(24), 14178-14185. https://doi.org/10.1021/es503313t.

Hwang, D.W., Kim,G., Lee, W.C., Oh, H.T., 2010. The role of submarine groundwater discharge (SGD) in nutrient budgets of Gamak Bay, a shellfish farming bay, in Korea. Journal of Sea Research, 64(3), 224-230. https://doi.org/10.1016/j.seares.2010.02.006.

Kim, G., Ryu, J.W., Yang, H.S., Yun, S.T., 2005. Submarine groundwater discharge (SGD) into the Yellow Sea revealed by 228Ra and 226Ra isotopes: Implications for global silicate fluxes. Earth & Planetary Science Letters, 237(1-2), 156-166. https://doi.org/10.1016/j.epsl.2005.06.011.

Kiro, Y., Yechieli, Y., Voss, C.I., Starinsky, A., Weinstein, Y., 2012. Modeling radium distribution in coastal aquifers during sea level changes: The Dead Sea case. Geochimica Et Cosmochimica Acta, 88(7), 237-254. https://doi.org/10.1016/j.gca.2012.03.022.

Knee, K.L., Crook, E.D., Hench, J.L., Leichter, J.J., Paytan, A., 2016. Assessment of submarine groundwater discharge (SGD) as a source of dissolved radium and nutrients to Moorea (French Polynesia) coastal waters. Estuaries & Coasts, 39(6), 1651-1668. https://doi.org/10.1007/s12237-016-0108-y.

Konikow, L.F., Akhavan, M., Langevin, C.D., Michael, H.A., Sawyer, A.H., 2013. Seawater circulation in sediments driven by interactions between seabed topography and fluid density. Water Resources Research, 49(3), 1386–1399. https://doi.org/10.1002/wrcr.20121.

Lee, C.M., Jiao, J.J., Luo, X., Moore, W.S., 2012. Estimation of submarine groundwater discharge and associated nutrient fluxes in Tolo Harbour, Hong Kong. Science of the Total Environment, 433, 427-433. https://doi.org/10.1016/j.scitotenv.2012.06.073.

Lee, Y.W., Kim, G., 2007. Linking groundwater-borne nutrients and dinoflagellate red-tide outbreaks in the southern sea of Korea using a Ra tracer. Estuarine Coastal & Shelf Science, 71(1–2), 309-317. https://doi.org/10.1016/j.ecss.2006.08.004.

Lee, Y.W., Hwang, D.W., Kim, G., Lee, W.C., Oh, H.T., 2009. Nutrient inputs from submarine groundwater discharge (SGD) in Masan Bay, an embayment surrounded by heavily industrialized cities, Korea. Science of the Total Environment, 407(9), 3181-3188. https://doi.org/10.1016/j.scitotenv.2008.04.013.

Li, H.L., Jiao, J.J., 2003. Tide-induced seawater–groundwater circulation in a multi-layered coastal leaky aquifer system. Journal of Hydrology, 274(1–4), 211-224. https://doi.org/10.1016/S002-1694(02)00413-4.

Li, H.L., Boufadel, M.C., Weaver, J.W., 2008. Tide-induced seawater-groundwater circulation in shallow beach aquifers. Journal of Hydrology, 352(1-2), 211-224. https://doi.org/10.1016/j.jhydrol.2008.01.013.

Li, H.L., Jiao, J.J., 2013. Quantifying tidal contribution to submarine groundwater discharges: A review. Chinese Science Bulletin, 58(25), 3053-3059. https://doi.org/10.1007/s11434-013-5951-7.

Li, L., Barry, D.A., Stagnitti, F., Parlange, J.Y., 1999. Submarine groundwater discharge and associated chemical input to a coastal sea. Water Resources Research, 35(11), 3253-3259. https://doi.org/10.1029/1999wr900189.

Li, L., Barry, D.A., 2000. Wave-induced beach groundwater flow. Advances in Water Resources, 23(4), 325-337. https://doi.org/10.1016/s0309-1708(99)00032-9.

Liu, Z., Wei, H., Jiang, S.N., 2003. Characteristics of seasonal variation of monthly mean temperature and salinity fields in the Bohai Sea and analysis of the related dynamics. Journal of Ocean University of Qingdao, 33(1), 7-14 (in Chinese).

Luo, S., Ku, T.L., Roback, R., Murrell, M., Mcling, T.L., 2000. In-situ radionuclide transport and preferential groundwater flows at INEEL (Idaho): Decay-series disequilibrium studies. Geochimica Et Cosmochimica Acta, 64(5), 867-881. https://doi.org/10.2172/827120.

Luo, X., Jiao, J.J., Moore, W.S., Lee, C.M., 2014. Submarine groundwater discharge estimation in an urbanized embayment in Hong Kong via short-lived radium isotopes and its implication of nutrient loadings and primary production. Marine Pollution Bulletin, 82(1–2), 144-154. https://doi.org/10.1016/j.marpolbul.2014.03.005.

Mackenzie, F.T., Ver, L.M., Lerman, A., 2002. Century-scale nitrogen and phosphorus controls of the carbon cycle. Chemical Geology, 190(1–4), 13-32. https://doi.org/10.1016/s0009-2541(02)00108-0.

Moore, W.S., 1976. Sampling 228Ra in the deep ocean. Deep Sea Research & Oceanographic Abstracts, 23(7), 647-651. https:// doi.org/10.1016/0011-7471(76)90007-3.

Moore, W.S., Arnold, M.P., 1996. Measurement of 223Ra and 224Ra in coastal waters using a delayed coincidence counter. Journal of Geophysical Research Atmospheres, 101(C1), 1321-1329. https://doi.org/10.1029/95JC03139.

Moore, W.S., 1997. High fluxes of radium and barium from the mouth of the Ganges-Brahmaputra River during low river discharge suggest a large groundwater source. Earth & Planetary Science Letters, 150(1-2), 141-150. https://doi.org/10.1016/s0012-821x(97)00083-6.

Moore, W.S., 2000. Ages of continental shelf waters determined from Ra-223 and Ra-224. Journal of Geophysical Research-Oceans, 105(C9), 22117-22122.

Moore, W.S., Wilson, A.M., 2005. Advective flow through the upper continental shelf driven by storms, buoyancy, and submarine groundwater discharge. Earth & Planetary Science Letters, 235(3-4), 564-576. https://doi.org/10.1016/j.epsl.2005.04.043.

Moore, W.S., 2006. The role of submarine groundwater discharge in coastal biogeochemistry. Journal of Geochemical Exploration, 88(1–3), 389-393. https://doi.org/10.1016/j.gexplo.2005.08.082.

Moore, W.S., Blanton, J.O., Joye, S.B., 2006. Estimates of flushing times, submarine groundwater discharge, and nutrient fluxes to Okatee Estuary, South Carolina. Journal of Geophysical Research Oceans, 111(C9), 141-152. https://doi.org/10.1029/2005jc003041.

Moore, W.S., Sarmiento, J.L., Key, R.M., 2008. Submarine groundwater discharge revealed by 228Ra distribution in the upper Atlantic Ocean. Nature Geoscience, 1(5), 309-311. https://doi.org/10.1038/ngeo183.

Moore, W.S., 2010. The effect of submarine groundwater discharge on the ocean. Annual Review of Marine Science, 2(2), 59. https://doi.org/10.1146/annurev-marine-120308-081019.

Moore, W.S., Beck, M., Riedel, T., Loeff, M.R.V.D., Dellwig, O., Shaw, T.J., Schnetger, B., Brumsack, H.J., 2011. Radium-based pore water fluxes of silica, alkalinity, manganese, DOC, and uranium: A decade of studies in the German Wadden Sea. Geochimica Et Cosmochimica Acta, 75(21), 6535-6555. https://doi.org/10.1016/j.gca.2011.08.037.

Moore, W.S., Cai, P., 2013. Calibration of RaDeCC systems for 223Ra measurements. Marine Chemistry, 156, 130-137. https://doi.org/10.1016/j.marchem.2013.03.002.

Moran, S.B., Stachelhaus, S.L., Kelly, R.P., Brush, M.J., 2014. Submarine groundwater discharge as a source of dissolved inorganic nitrogen and phosphorus to coastal ponds of Southern Rhode Island. Estuaries & Coasts 37(1), 104-118. https://doi.org/10.1007/s12237-013-9663-7.

Peterson, R.N., Burnett, W.C., Makoto, T., Chen, J.Y., Santos, I.R., Ishitobi, T., 2008. Radon and radium isotope assessment of submarine groundwater discharge in the Yellow River Delta. Journal of Geophysical Research: Oceans, 113(C9), 233-241. https://doi.org/10.1029/2008jc004776.

Peterson, R.N., Burnett, W.C., Glenn, C.R., Johnson, A.G., 2009. Quantification of point-source groundwater discharges to the ocean from the shoreline of the Big Island, Hawaii. Limnology & Oceanography, 54(3), 890-904. https://doi.org/10.4319/lo.2009.54.3.0890.

Peterson, R.N., Burnett, W.C., Opsahl, S.P., Santos, I.R., Misra, S., Froelich, P.N., 2013. Tracking suspended particle transport via radium isotopes (226Ra and 228Ra) through the Apalachicola-Chattahoochee-Flint River system. Journal of Environmental Radioactivity, 116, 65-75. https://doi.org/10.1016/j.jenvrad.2012.09.001.

Rabouille, C., Mackenzie, F.T., Ver, L.M., 2001. Influence of the human perturbation on carbon, nitrogen, and oxygen biogeochemical cycles in the global coastal ocean. Geochimica Et Cosmochimica Acta, 65(21), 3615-3641. https://doi.org/10.1016/s0016-7037(01)00760-8.

Santosa, I.R., Eyre, B.D., Huettel, M., 2012. The driving forces of porewater and groundwater flow in permeable coastal sediments: A review. Estuarine Coastal & Shelf Science, 98(1), 1-15. https://doi.org/10.1016/j.ecss.2011.10.024.

Stewart, B.T., Bryan, K.R., Pilditch, C.A., Santos, I.R. 2018. Submarine groundwater discharge estimates using radium isotopes and related nutrient inputs into Tauranga Harbour (New Zealand). Estuaries & Coasts, 41(2), 384-403. https://doi.org/10.1007/s12237-017-0290-6.

Sturchio, N.C., Banner, J.L., Binz, C.M., Heraty, L.B., Musgrove, M., 2001. Radium geochemistry of ground waters in Paleozoic carbonate aquifers, midcontinent, USA. Applied Geochemistry, 16(1), 109-122. https://doi.org/10.1016/s0883-2927(00)00014-7.

Swarzenski, P.W., Reich, C., Kroeger, K.D., Baskaran, M., 2007. Ra and Rn isotopes as natural tracers of submarine groundwater discharge in Tampa Bay, Florida. Marine Chemistry, 104(1-2), 69-84. https://doi.org/10.1016/j.marchem.2006.08.001.

Taniguchi, M., Burnett, W.C., Cable, J.E., Turner, J.V., 2002. Investigation of submarine groundwater discharge. Hydrological Processes, 16(11),2115-2129. https://doi.org/10.1002/hyp.1145.

Tse, K.C., Jiao, J.J., 2008. Estimation of submarine groundwater discharge in Plover Cove, Tolo Harbour, Hong Kong by Rn-222. Marine Chemistry, 111(3/4), 160-170. https://doi.org/10.1016/j.marchem.2008.04.012.

Wang, H.J., Yang, Z.S., Saito, Y., Liu, J.P., Sun, X.X., 2006. Interannual and seasonal variation of the Huanghe (Yellow River) water discharge over the past 50 years: Connections to impacts from ENSO events and dams. Global & Planetary Change, 50(3–4), 212-225. https://doi.org/10.1016/j.gloplacha.2006.01.005.

Wang, Q., Guo, X.Y., Takeoka, H., 2008. Seasonal variations of the Yellow River plume in the Bohai Sea: A model study. Journal of Geophysical Research Oceans, 113(C8), 2092-2112. https://doi.org/10.1029/2007jc004555.

Wang, X., Li, H., Jiao, J.J., Barry, D.A., Li, L., Luo, X., Wang, C., Wan, L., Wang, X., Jiang, X., 2015. Submarine fresh groundwater discharge into Laizhou Bay comparable to the Yellow River flux. Scientific Reports, 5, 8814. https://doi.org/10.1038/srep08814.

Wang, X.J., Li, H.L., Yang, J.Z., Zheng, C.M., Zhang, Y., An, A., Zhang, M., Xiao, K., 2017. Nutrient inputs through submarine groundwater discharge in an embayment: A radon investigation in Daya Bay, China. Journal of Hydrology, 551, 784-792. https://doi.org/10.1016/j.jhydrol.2017.02.036.

Waska, H., Kim, G., 2011. Submarine groundwater discharge (SGD) as a main nutrient source for benthic and water-column primary production in a large intertidal environment of the Yellow Sea. Journal of Sea Research, 65(1), 103-113. https://doi.org/10.1016/j.seares.2010.08.001.

Wilson, A.M., Moore, W.S., Joye, S.B., Anderson, J.L., Schutte, C.A., 2011. Stormdriven groundwater flow in a salt marsh. Water Resources Research, 47 (2), 247-255. https://doi.org/10.1029/2010wr009496.

Wudtisin, W., Boyd, C.E., 2005. Determination of the phosphorus fertilization rate for bluegill ponds using regression analysis. Aquaculture Research, 36(6), 593-599. https://doi.org/10.1111/j.1365-2109.2005.01261.x.

Xin, P., Robinson, C., Li, L., Barry, D.A., Bakhtyar, R., 2010. Effects of wave forcing on a subterranean estuary. Water Resources Research, 46(12), 439-445. https://doi.org/10.1029/2010wr009632.

Xu, B., Burnett, W., Dimova, N., Diao, S.B., Mi, T.Z., Jiang, X.Y., Yu, Z.G., 2013. Hydrodynamics in the Yellow River Estuary via radium isotopes: Ecological perspectives. Continental Shelf Research, 66(1), 19-28. https://doi.org/10.1016/j.csr.2013.06.018.

Zhang, Y., 2016. Estimation of submarine groundwater discharge and associated nutrient fluxes in eastern Laizhou Bay, China using 222Rn. Journal of Hydrology, 533, 103-113. https://doi.org/10.1016/j.jhydrol.2015.11.027.

Zhou, L., Boyd, C.E., 2015. Bluegill yield in response to nitrogen and phosphorus versus phosphorus-only fertilization in ponds at different times since sediment removal. Aquaculture, 446, 7-11. https://doi.org/10.1016/j.aquaculture.2015.04.019.

Similar articles

Copyright by Water Science and Engineering