Water Science and Engineering 2018, 11(1) 39-45 DOI:   https://doi.org/10.1016/j.wse.2017.05.005  ISSN: 1674-2370 CN: 32-1785/TV

Current Issue | Archive | Search                                                            [Print]   [Close]
Information and Service
This Article
Supporting info
PDF(2389KB)
Reference
Service and feedback
Email this article to a colleague
Add to Bookshelf
Add to Citation Manager
Cite This Article
Email Alert
Keywords
Elevated CO2 concentration
Invasive species
Plant growth
Climate change
Inorganic nitrogen
Nitrogen cycling
Authors
PubMed

Effects of elevated atmospheric CO2 and nitrogen fertilization on nitrogen cycling in experimental riparian wetlands

Jun Liu a,b,*, Gloria Appiah-Sefah c, Theresa Oteng Apreku c

a College of Materials Science and Technology, Nanjing Forestry University, Nanjing 210037, China b Nanjing Technical Vocational College, Nanjing 210019, China c Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China

Abstract

Studies on the relationship between plant nitrogen content and soil nitrogen reduction under elevated CO2 conditions and with different nitrogen additions in wetland ecosystems are lacking. This study was meant to assess the effects of elevated CO2 concentrations and inorganic nitrogen additions on soil and plant nitrogen cycling. A cultured riparian wetland, alligator weeds, and two duplicated open top chambers (OTCs) with ambient (380 μmol/mol) and elevated (700 μmol/mol) CO2 concentrations at low (4 mg/L) and high (6 mg/L) nitrogen fertilization levels were used. The total plant biomass increased by 30.77% and 31.37% at low and high nitrogen fertilization levels, respectively, under elevated CO2 conditions. Plant nitrogen content decreased by 6.54% and 8.86% at low and high nitrogen fertilization levels, respectively. The coefficient of determination (R2) of soil nitrogen contents ranged from 0.81 to 0.96. Under elevated CO2 conditions, plants utilized the assimilated inorganic nitrogen (from the soil) for growth and other internal physiological transformations, which might explain the reduction in plant nitrogen content. A reduction in soil dissolved inorganic nitrogen (DIN) under elevated CO2 conditions might have also caused the reduction in plant nitrogen content. Reduced plant and soil nitrogen contents are to be expected due to the potential exhaustive use of inorganic nitrogen by soil microorganisms even before it can be made available to the soil and plants. The results from this study provide important information to help policy makers make informed decisions on sustainable management of wetlands. Larger-scale field work is recommended in future research.

Keywords Elevated CO2 concentration   Invasive species   Plant growth   Climate change   Inorganic nitrogen   Nitrogen cycling  
Received 2016-12-09 Revised 2017-05-03 Online: 2018-01-31 
DOI: https://doi.org/10.1016/j.wse.2017.05.005
Fund:

This work was supported by the Fundamental Research Funds for the Central Universities (Grant No. 2009B17714) and the National Program on Key Basic Research Projects of China (Grant No. 2012CB719800).

Corresponding Authors: 496884531@qq.com (Jun Liu)
Email: 496884531@qq.com
About author: 496884531@qq.com (Jun Liu)

References:

Altmann, D., Stief, P., Amann, R., de Beer, D., 2004. Nitrification in freshwater sediments as influenced by insect larvae: Quantification by microsensors and fluorescence in situ hybridization. Microbiology Ecology, 48(2), 145153. https://doi.org/10.1007/s00248-003-2015-6.

Balser, T.C., Kinzig, A.P., Firestone, M.K., 2001. Linking soil microbial communities and ecosystem functioning. Kinig, A., Pacala, A.S., Tilman, D., (eds.), The Functional Consequences of Biodiversity. Princeton University Press, Princeton, pp. 265293.

Balser, T.C., Firestone, M.K., 2005. Linking microbial community composition and soil processes in a California annual grassland and mixed-conifer forest. Biogeochemistry, 73(2), 395415. https://doi.org/10.1007/s10533-004-0372-y.

Berntson, G.M., Bazzaz, F.A., 1998. Regenerating temperate forest microcosms in elevated CO2: Belowground growth and nitrogen cycling. Oecologia, 113(1), 115125. https://doi.org/10.1007/s004420050359.

Billings, S.A., Schaeffer, S.M., Zitzer, S., Charlet, T., Smith, S.D., Evans, R.D., 2002. Alterations of nitrogen dynamics under elevated CO2 in an intact Mojave Desert ecosystem: Evidence from 15N natural abundance. Oecologia, 131(3), 463467. https://doi.org/10.1007/s00442-002-0898-4.

Bragazza, L., Freeman, C., Jones, T., Rydin, H., Limpens, J., Fenner, N., Ellis, T., Gerdol, R., Hájek, M., Hájek, T., et al., 2007. Atmospheric nitrogen deposition promotes carbon loss from peat bogs. Proceedings of National Academy of Science, 103(51), 1938619389. https://doi.org/10.1073/pnas.0606629104.

Chen, Y., Zhou, Y., Yin, T.F., Liu, C.X., Luo, F.L., 2013. The invasive wetland plant Alternanthera philoxeroides shows a higher tolerance to waterlogging than its native congener Alternanthera sessilis. PLOS ONE, 8(11), e81456. https://doi.org/10.1371/journal.pone.0081456.

Cotrufo, M.F., Gorissen, A., 1997. Elevated CO2 enhances below-ground C allocation in three perennial grass species at different levels of N availability. New Phytologist, 137(3), 421431. https://doi.org/10.1046/j.1469-8137.1997.00839.x.

Daepp, M., Suter, D., Almeida, P.F., Isopp, H., Hartwig, U.A., Frehner, M., Blum, H., Nösberger, J., Lüscher, A., 2000. Yield response of Lolium perenne swards to free air CO2 enrichment increased over six years in a high N input system on fertile soil. Global Change Biology, 6(7), 805816. https://doi.org/10.1046/j.1365-2486.2000.00359.x.

Deiglmayr, K., Philippot, L., Hartwig, U.A., Kandeler, H., 2004. Structure and activity of the nitrate-reducing community in the rhizosphere of Lolium prenne and Trifolium repens under long-term elevated atmosphere CO2. FEMS Microbiology Ecology, 49(3), 445454. https://doi.org/10.1016/j.femsec.2004.04.017.

Dijkstra, F.A., Pendall, E., Mosier, A.R., King, J.Y., Milchunas, D.G., Morgan, J.A., 2008. Long-term enhancement of N availability and plant growth under elevated CO2 in a semi-arid grassland. Functional Ecology, 22(6), 975982. https://doi.org/10.1111/j.1365-2435.2008.01398.x.

D?az, S., Grime, J.P., Harris, J., Mcpherson, E., 1993. Evidence of a feedback mechanism limiting plant response to elevated carbon dioxide. Nature, 364(6438), 616617. https://doi.org/10.1038/364616a0.

Gill, R.A., Polley, H.W., Johnson, H.B., Anderson, L.J., Maherali, H., Jackson, R.B., 2002. Nonlinear grassland responses to past and future atmospheric CO2. Nature, 417(6886), 279–282. https://doi.org/10.1038/417279a.

Guo, X.L., Lu, X.G., Tian, K., 2010. Nitrogen cycling in plant-soil systems in three freshwater wetland types along a water level gradient in the Sanjiang Plain, Northeast China. Fresenius Environmental Bulletin, 19(4), 1–8.

Hagedorn, F., van Hees, P.A.W., Handa, I.T., Hättenschwiler, S., 2008. Elevated atmospheric CO2 fuels leaching of old dissolved organic matter at the alpine treeline. Global Biogeochemical Cycles, 22(2). https://doi.org/10.1029/2007GB003026.

Hu, S., Chapin, F.S., Firestone, M.K., Field, C.B., Chiarello, N.R., 2001. Nitrogen limitation of microbial decomposition in grassland under elevated CO2. Nature, 409(6817), 188191. https://doi.org/10.1038/35051576.

Hungate, B.A., Canadell, J., Chapin III, F.S., 1996. Plant species mediate changes in soil microbial N in response to elevated CO2. Ecology, 77(8), 25052515. https://doi.org/10.2307/2265749.

Hungate, B.A., 1999. Ecosystems response to rising atmospheric CO2: Feedbacks through the N cycling. Carbon Dioxide and Environmental Stress, 265285. https://doi.org/10.1016/B978-012460370-7/50011-5.

Koizumi, H., Nakadai, T., Usami, Y., Satoh, M., Shiyomi, M., Oikawa, T., 1991. Effect of carbon dioxide concentration on microbial respiration in soil. Ecological Research, 6(3), 227232. https://doi.org/10.1007/BF02347124.

Luo, Q., Krumholz, L.R., Najar, F.Z., Peacock, A.D., Roe, B.A., White, D.C., Elshahed, M.S., 2005. Diversity of the Microeukaryotic community in sulfide-rich zodletone spring (Oklahoma). Environmental Microbiology, 71(10), 61756184. https://doi.org/10.1128/AEM.71.10.6175-6184.2005.

Luo, Y.Q., Su, B., Currie, W.S., Dukes, J.S., Finzi, A., Hartwig, U., Hungate, B., Mcmurtrie, R.E., Oren, R., Parton, W.J., et al., 2004. Progressive nitrogen limitation of ecosystem response to rising atmospheric carbon dioxide. Bioscience, 54(8), 731739. https://doi.org/10.1641/0006-3568(2004)054[0731:PNLOER]2.0.CO;2.

Martín-Olmedo, P., Rees, R.M., Grace, J., 2002. The influence of plants grown under elevated CO2 and N fertilization on soil nitrogen dynamics. Global Change Biology, 8(7), 643657. https://doi.org/10.1046/j.1365-2486.2002.00499.x.

Morgan, J.A., Mosier, A.R., Milchunas, D.G., Lecain, D.R., Nelson, J.A., Parton, W.J., 2004. CO2 enhance productivity, alters species composition, and reduces digestibility of shortgrass steppe vegetation. Ecological Applications, 14(1), 208219. https://doi.org/10.1890/02-5213.

Morgan, J.A., Milchunas, D.G., Lecain, D.R., West, M., Moisier, A.R., 2007. Carbon dioxide enrichment alters plant community structure and accelerates shrub growth in the shortgrass steppe. Proceedings of the National Academy of Science of the USA, 104(37), 1472414729. https://doi.org/10.1073/pnas.0703427104.

Norby, R.J., 1994. Issues and perspectives for investigating root responses to elevated atmospheric carbon dioxide. Plant & Soil, 165(1), 920. https://doi.org/10.1007/BF00009958.

Pang, J., Zhu, J.G., Xie, Z.B., Liu, G., Zhang, Y.L., Chen, G.P., Zheng, Q., Cheng, L., 2006. A new explanation of the N concentration decrease in tissue of rice (Oryza sativa L.) exposed to elevated atmospheric pCO2. Environment and Experimental Botany, 57(12), 98105. https://doi.org/10.1016/j.envexpbot.2005.04.004.

Reich, P.B., Knops, J., Tilman, D., Craine, J., Ellsworth, D., Tjoelkerd, M., Lee, T., Wedin, D., Naeem, S., Bahauddin, D., et al., 2001. Plant diversity enhances ecosystem responses to elevated CO2 and N deposition. Nature, 410(6830), 809812. https://doi.org/10.1038/35071062.

Reich, P.B., Hungate, B.A., Luo, Y.Q., 2006. Carbon-nitrogen interactions in terrestrial ecosystems in response to rising atmospheric carbon dioxide. Annual Review of Ecology, Evolution and Systematics, 37, 611636. https://doi.org/10.1146/annurev.ecolsys.37.091305.110039.

van Groenigen, K.J., Six, J., Hungate, B.A., de Graff, M., van Breemer, N., van Kessel, C. 2006. Element interactions limit soil carbon storage. PNAS 103(17), 65716574. https://doi.org/10.1073/pnas.0509038103.

Wang, A.O., Jiang, X.X., Zhang, Q.Q., Zhou, J., Li, H.L., Luo, F.L., Zhang, M.X., Yu, F.H., 2014. Nitrogen addition increases intraspecific competition in the invasive wetland plant Alternanthera philoxeroides, but not in its native congener Alternanthera sessilis. Plant Species Biology, 30(3), 14421984. https://doi.org/10.1111/1442-1984.12048.

 

Similar articles
1. Wei ZHANG, Shou-sheng MU, Yan-jing ZHANG, Kai-min CHEN.Seasonal and interannual variations of flow discharge from Pearl River into sea[J]. Water Science and Engineering, 2012,5(4): 399-409
2. Lin-lin CAI, Guang-wei ZHU, Meng-yuan ZHU, Hai XU, Bo-qiang QIN.Effects of temperature and nutrients on phytoplankton biomass during bloom seasons in Taihu Lake[J]. Water Science and Engineering, 2012,5(4): 361-374

Copyright by Water Science and Engineering