Water Science and Engineering 2017, 10(4) 334-339 DOI:   https://doi.org/10.1016/j.wse.2017.12.010  ISSN: 1674-2370 CN: 32-1785/TV

Current Issue | Archive | Search                                                            [Print]   [Close]
Information and Service
This Article
Supporting info
Service and feedback
Email this article to a colleague
Add to Bookshelf
Add to Citation Manager
Cite This Article
Email Alert
Visible light

Preparation of 2D square-like Bi2S3-BiOCl heterostructures with enhanced visible light-driven photocatalytic performance for dye pollutant degradation

Jing-jing Xu a,b,c,*, Jing-wen Yang a,b,c, Pu Zhang a,b,c, Quan Yuan a,b,c, Yan-hong Zhu a,b,c, Yu Wang a,b,c, Miao-miao Wu a,b,c, Zheng-mei Wang a,b,c, Min-dong Chen a,b,c

a Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
b Jiangsu Engineering Technology Research Center of Environmental Cleaning Materials, Nanjing University of Information Science and Technology, Nanjing 210044, China
c Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science and Technology, Nanjing 210044, China


A series of Bi2S3-BiOCl composites with two-dimensional (2D) square-like structures were prepared via a two-step anion exchange route. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and diffuse reflectance spectra (DRS) were used to investigate the properties of the as-prepared Bi2S3-BiOCl heterostructures. The coupling of BiOCl and Bi2S3 induced enhanced photoabsorption efficiency and bandgap narrowing. A reactive brilliant red X-3B dye was used as a contaminant to test the photocatalytic activity of the obtained Bi2S3-BiOCl samples under visible light irradiation. The sample Bi2S3-BiOCl with a mass ratio of 8:4 exhibited the highest photodegradation efficiency, which was six times higher than that of pure BiOCl. In addition, a mechanism for the enhancement of photocatalytic activity is proposed.

Keywords Photocatalysis   Bi2S3   BiOCl   Visible light   Heterostructure  
Received 2016-12-01 Revised 2017-03-09 Online: 2017-10-30 
DOI: https://doi.org/10.1016/j.wse.2017.12.010

This work was supported by the Natural Science Foundation of Jiangsu Province (Grant No. BK2012464), the Research Fellowship from the Jiangsu Overseas Research and Training Program, and a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Corresponding Authors: xujj@nuist.edu.cn (Jing-jing Xu)
Email: xujj@nuist.edu.cn
About author:


Ao, Y.H., Bao, J.Q., Wang, P.F., Wang, C., Hou, J., 2016a. Bismuth oxychloride modified titanium phosphate nanoplates: A new p-n type heterostructured photocatalyst with high activity for the degradation of different kinds of organic pollutants. Journal of Colloid and Interface Science. 476, 71–78. http://dx.doi.org/10.1016/j.jcis.2016.05.021.
Ao, Y.H., Wang, K.D., Wang, P.F., Wang, C., Hou, J., 2016b. Synthesis of novel 2D-2D p-n heterojunction BiOBr/La2Ti2O7 composite photocatalyst with enhanced photocatalytic performance under both UV and visible light irradiation. Applied Catalysis B: Environmental. 194, 157–168. http://dx.doi.org/10.1016/j.apcatb.2016.04.050.
Ao, Y.H., Wang, K.D., Wang, P.F., Wang, C., Hou, J., 2016c. Fabrication of novel p-n heterojunction BiOI/La2Ti2O7 composite photocatalysts for enhanced photocatalytic performance under visible light irradiation. Dalton Transactions. 45(19), 7986–7997. http://dx.doi.org/10.1039/c6dt00862c.
Bianchi, C.L., Gatto, S., Pirola, C., Naldoni, A., Di Michele, A., Cerrato, G., Crocella, V., Capucci, V., 2014. Photocatalytic degradation of acetone, acetaldehyde and toluene in gas-phase: Comparison between nano and micro-sized TiO2. Applied Catalysis B: Environmental. 146, 123–130. http://dx.doi.org/10.1016/j.apcatb.2013.02.047.
Cao, J., Xu, B.Y., Lin, H.L., Luo, B.D., Chen, S.F., 2012. Novel Bi2S3-sensitized BiOCl with highly visible light photocatalytic activity for the removal of rhodamine B. Catalysis Communications. 26, 204–208. http://dx.doi.org/10.1016/j.catcom.2012.05.025.
Cao, J., Zhou, C.C., Lin, H.L., Xu, B.Y., Chen, S.F., 2013. Surface modification of m-BiVO4 with wide band-gap semiconductor BiOCl to largely improve the visible light induced photocatalytic activity. Applied Surface Science. 284, 263–269. http://dx.doi.org/10.1016/j.apsusc.2013.07.092.
Carey, J.H., Lawrence, J., Tosine, H.M., 1976. Photodechlorination of PCB’s in the presence of titanium dioxide in aqueous suspensions. Bulletin of Environmental Contamination and Toxicology. 16(6), 697–701.
Chen, L., Huang, R., Xiong, M., Yuan, Q., He, J., Jia, J., Yao, M.Y., Luo, S.L., Au, C.T., Yin S.F., 2013. Room-temperature synthesis of flower-like BiOX (X = Cl, Br, I) hierarchical structures and their visible-light photocatalytic activity. Inorganic Chemistry. 52(19), 11118–11125. http://dx.doi.org/10.1021/ic401349j.
Cheng, H.F., Huang, B.B., Qin, X.Y., Zhang, X.Y., Dai, Y., 2012. A controlled anion exchange strategy to synthesize Bi2S3 nanocrystals/BiOCl hybrid architectures with efficient visible light photoactivity. Chemical Communications. 48(1), 97–99. http://dx.doi.org/10.1039/c1cc15487g.
Deng, Z.T., Tang, F.Q., Muscat, A.J., 2008. Strong blue photoluminescence from single-crystalline bismuth oxychloride nanoplates. Nanotechnology. 19(29), 295705–295710. http://dx.doi.org/10.1088/0957-4484/19/29/295705.
Ferreira, V.C., Neves, M.C., Hillman, A.R., Monteriro, O.C., 2016. Novel one-pot synthesis and sensitisation of new BiOCl-Bi2S3 nanostructures from DES medium displaying high photocatalytic activity. RSC Advances. 6, 77329–77339. http://dx.doi.org/10.1039/C6RA14474H.
Fujishima, A., Honda, K., 1972. Electrochemical photolysis of water at a semiconductor electrode. Nature. 238(5358), 37–38. http://dx.doi.org/10.1038/238037a0.
Jiang, S.H., Zhou, K.Q., Shi, Y.Q., Lo, S.M., Xu, H.Y., Hu, Y., Gui, Z., 2014. In situ synthesis of hierarchical flower-like Bi2S3/BiOCl composite with enhanced visible light photocatalytic activity. Applied Surface Science. 290, 313–319. http://dx.doi.org/10.1016/j.apsusc.2013.11.074.
Li, G.T., Wong, K.H., Zhang, X.W, Hu, C., Yu, J.C., Chan, R.C.Y., Wong, P.K., 2009. Degradation of Acid Orange 7 using magnetic AgBr under visible light: The roles of oxidizing species. Chemosphere. 76(9), 1185–1191. http://dx.doi.org/10.1016/j.chemosphere.2009.06.027.
Liu, Y., Shi, Y.D, Liu, X., Li, H.X., 2017. A facile solvothermal approach of novel Bi2S3/TiO2/RGO composites with excellent visible light degradation activity for methylene blue. Applied Surface Science. 396, 58–66. http://dx.doi.org/10.1016/j.apsusc.2016.11.028
Maile, F.J., Pfaff, G., Reynders, P., 2005. Effect pigments: Past, present and future. Progress in Organic Coatings. 54(3), 150–163. http://dx.doi.org/10.1016/j.porgcoat.2005.07.003.
Nawaz, M., 2017. Morphology-controlled preparation of Bi2S3-ZnS chloroplast-like structures, formation mechanism and photocatalytic activity for hydrogen production. Journal of Photochemistry and Photobiology A: Chemistry. 332, 326–330. http://dx.doi.org/10.1016/j.jphotochem.2016.09.005.
Qin, X.Y., Cheng, H.F., Wang, W.J., Huang, B.B., Zhang, X.Y., Dai, Y., 2013. Three dimensional BiOX (X = Cl, Br and I) hierarchical architectures: Facile ionic liquid-assisted solvothermal synthesis and photocatalysis towards organic dye degradation. Materials Letters. 100, 285–288. http://dx.doi.org/10.1016/j.matlet.2013.03.045.
Shenawi-Khalil, S., Uvarov, V., Kritsman, Y., Mennes, E., Popov, I., Sasson, Y., 2011. A new family of BiO (ClxBr1 − x) visible light sensitive photocatalysts. Catalysis Communications. 12(12), 1136–1141. http://dx.doi.org/10.1016/j.catcom.2011.03.014.
Wang, B., Li, C., Cui, H., Zhang, J.P., Zhai, J., Li, Q., 2014. Shifting mechanisms in the initial stage of dye photodegradation by hollow TiO2 nanospheres. Journal of Materials Science. 49(3), 1336–1344. http://dx.doi.org/10.1007/s10853-013-7817-4.
Wang, P.Q., Bai, Y., Liu, J.Y., Fan, Z., Hu, Y.Q., 2012. Facile synthesis and activity of daylight-driven plasmonic catalyser Ag/AgX (X = Cl, Br). IET Micro & Nano Letters. 7(8), 838–841. http://dx.doi.org/10.1049/mnl.2012.0591.
Wang, Q.Z., Hui, J., Li, J.J., Cai, Y.X., Yin, S.Q., Wang, F.P., Su, B.T., 2013a. Photodegradation of methyl orange with PANI-modified BiOCl photocatalyst under visible light irradiation. Applied Surface Science. 283, 577–583. http://dx.doi.org/10.1016/j.apsusc.2013.06.149.
Wang, W.J., Cheng, H.F., Huang, B.B., Lin, X.J., Qin, X.Y., Zhang, X.Y., Dai Y., 2013b. Synthesis of Bi2O2CO3/Bi2S3 hierarchical microspheres with heterojunctions and their enhanced visible light-driven photocatalytic degradation of dye pollutants. Journal of Colloid and Interface Science. 402, 34–39. http://dx.doi.org/110.1016/j.jcis.2013.03.054.
Wang, Y.Q., Sun, L., Fugetsu, B., 2013c. Morphology-controlled synthesis of sunlight-driven plasmonic photocatalysts Ag@AgX (X = Cl, Br) with graphene oxide template. Journal of Materials Chemistry A. 1(40), 12536–12544. http://dx.doi.org/10.1039/c3ta12893h.
Xia, J.X., Xu, L., Zhang, J., Yin, S., Li, H.M., Xu, H., Di, J., 2013. Improved visible light photocatalytic properties of Fe/BiOCl microspheres synthesized via self-doped reactable ionic liquids. CrystEngComm. 15(46), 10132–10141. http://dx.doi.org/10.1039/C3CE41555D.
Xiong, J.Y., Cheng, G, Li, G.F., Qin, F., Chen, R., 2011. Well-crystallized square-like 2D BiOCl nanoplates: Mannitol-assisted hydrothermal synthesis and improved visible-light-driven photocatalytic performance. RSC Advances. 1(18), 1542–1553. http://dx.doi.org/10.1039/C1RA00335F
Ye, P., Xie, J.J., He, Y.M., Zhang, L., Wu, T.H., Wu, Y., 2013. Hydrolytic synthesis of flower-like BiOCl and its photocatalytic performance under visible light. Materials Letters. 108, 168–171.
Zhang, J., Xia, J.X., Yin, S., Li, H.M., Xu, H., He, M.Q., Huang, L.Y., Zhang, Q., 2013a. Improvement of visible light photocatalytic activity over flower-like BiOCl/BiOBr microspheres synthesized by reactable ionic liquids. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 420, 89–95. http://dx.doi.org/10.1016/j.colsurfa.2012.11.054.
Zhang, W.D., Zhang, Q., Dong, F.D., 2013b. Visible-light photocatalytic removal of NO in air over BiOX (X = Cl, Br, I) single-crystal nanoplates prepared at room temperature. Industrial & Engineering Chemistry Research. 52(20), 6740–6746. http://dx.doi.org/10.1021/ie400615f.

Similar articles

Copyright by Water Science and Engineering