Water Science and Engineering 2017, 10(4) 326-333 DOI:   https://doi.org/10.1016/j.wse.2017.10.005  ISSN: 1674-2370 CN: 32-1785/TV

Current Issue | Archive | Search                                                            [Print]   [Close]
Information and Service
This Article
Supporting info
Service and feedback
Email this article to a colleague
Add to Bookshelf
Add to Citation Manager
Cite This Article
Email Alert
Heterogeneous catalysts
Fenton reaction
Core-shell structure
Magnetic separation
Acid orange 7

Fenton-like oxidation of azo dye in aqueous solution using magnetic Fe3O4-MnO2 nanocomposites as catalysts

Zhen-dong Fang, Kai Zhang, Jie Liu, Jun-yu Fan, Zhi-wei Zhao*

Department of National Defense Architecture Planning and Environmental Engineering, Logistical Engineering University, Chongqing 401311, China


In order to overcome the drawback of the low degree of separation from an aqueous solution of MnO2, Fe3O4-MnO2 core-shell nanocomposites were used as heterogeneous Fenton-like catalysts for the removal of acid orange 7. On the basis of the catalyst characterization, the catalytic ability of the as-synthesized nanocomposites was examined. The results showed that Fe3O4-MnO2 core-shell nanocomposites had greater catalytic ability than Fe3O4 or MnO2 used alone. Meanwhile, the catalyst dosage, H2O2 dosage, temperature, and initial pH had significant effects on the removal of acid orange 7. A high degree of stability and reusability were exhibited by Fe3O4-MnO2 core-shell nanocomposites. Both HO• and HO2• were generated in the reaction and HO• was the main radical for the removal of acid orange 7. A mechanism for H2O2 catalytic decomposition using Fe3O4-MnO2 core-shell nanocomposites to produce HO• is proposed.

Keywords Heterogeneous catalysts   Fenton reaction   Core-shell structure   Magnetic separation   Acid orange 7  
Received 2017-02-27 Revised 2017-05-06 Online: 2017-10-30 
DOI: https://doi.org/10.1016/j.wse.2017.10.005

This work was supported by the National Natural Science Foundation of China (Grant No. 51508564).

Corresponding Authors: hit_zzw@163.com (Zhi-wei Zhao)
Email: hit_zzw@163.com
About author:


Costa, R.C.C., Moura, F.C.C., Ardisson, J.D., Fabris, J.D., Lago, R.M., 2008. Highly active heterogeneous Fenton-like systems based on Fe0/Fe3O4 composites prepared by controlled reduction of iron oxides. Applied Catalysis B: Environmental. 83, 131-139. http://dx.doi.org/10.1016/j.apcatb.2008.01.039.
Cui, H., Huang, H., Fu, M., Yuan, B., Pearl, W., 2011. Facile synthesis and catalytic properties of single crystalline β-MnO2 nanorods. Catalysis Communications. 12(14), 1339-1343. http://dx.doi.org/10.1016/j.catcom.2011.05.013.
Gao, L., Zhuang, J., Nie, L., Zhang, J., Zhang, Y., Gu, N., Wang, T., Feng, J., Yang, D., Perrett, S., Yan, X., 2007. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nature Nanotechnology. 2(9), 577-583. http://dx.doi.org/10.1038/nnano.2007.260.
Gogoi, A., Navgire, M., Sarma, K.C., Gogoi, P., 2017. Fe3O4-CeO2 metal oxide nanocomposite as a Fenton-like heterogeneous catalyst for degradation of catechol. Chemical Engineering Journal. 311, 153-162. http://dx.doi.org/10.1016/j.cej.2016.11.086.
He, J., Yang, X., Men, B., Wang, D., 2016. Interfacial mechanisms of heterogeneous Fenton reactions catalyzed by iron-based materials: A review. Journal of Environmental Sciences. 39, 97-109. http://dx.doi.org/ 10.1016/j.jes.2015.12.003.
Hou, L., Zhang, Q., Jérôme, F., Duprez, D., Zhang, H., Royer, S., 2014. Shape-controlled nanostructured magnetite-type materials as highly efficient Fenton catalysts. Applied Catalysis B: Environmental. 144, 739-749. http://dx.doi.org/10.1016/j.apcatb.2013.07.072.
Huang, R., Liu, Y., Chen, Z., Pan, D., Li, Z., Wu, M., Shek, C., Wu, C.M.L., Lai, J.K.L., 2015. Fe-species-loaded mesoporous MnO2 superstructural requirements for enhanced catalysis. ACS Applied Materials & Interfaces. 7(7), 3949-3959. http://dx.doi.org/10.1021/am505989j.
Jaafarzadeh, N., Kakavandi, B., Takdastan, A., Kalantary, R.R., Azizi, M., Jorfi, S., 2015. Powder activated carbon/Fe3O4 hybrid composite as a highly efficient heterogeneous catalyst for Fenton oxidation of tetracycline: Degradation mechanism and kinetic. RSC Advances. 5(103), 84718-84728. http://dx.doi.org/10.1039/C5RA17953J.
Kim, E., Oh, D., Lee, C., Gong, J., Kim, J., Chang, Y., 2017. Manganese oxide nanorods as a robust Fenton-like catalyst at neutral pH: Crystal phase-dependent behavior. Catalysis Today. 282, 71-76. http://dx.doi.org/10.1016/j.cattod.2016.03.034.
Liu, J., Zhao, Z., Shao, P., Cui, F., 2015a. Activation of peroxymonosulfate with magnetic Fe3O4-MnO2 core-shell nanocomposites for 4-chlorophenol degradation. Chemical Engineering Journal. 262, 854-861.
Liu, J., Zhao, Z., Ding, Z., Fang, Z., Cui, F., 2016. Degradation of 4-chlorophenol in a Fenton-like system using Au-Fe3O4 magnetic nanocomposites as the heterogeneous catalyst at near neutral conditions. RSC Advances. 6(58), 53080-53088. http://dx.doi.org/10.1039/C6RA10929B.
Liu, J., Zhou, J., Ding, Z., Zhao, Z., Xu, X., Fang, Z., 2017. Ultrasound irritation enhanced heterogeneous activation of peroxymonosulfate with Fe3O4 for degradation of azo dye. Ultrasonics Sonochemistry. 34, 953-959. http://dx.doi.org/10.1016/j.ultsonch.2016.08.005.
Liu, W., Wang, Y., Ai, Z., Zhang, L., 2015b. Hydrothermal synthesis of FeS2 as a high-efficiency Fenton reagent to degrade alachlor via superoxide-mediated Fe(II)/Fe(III) cycle. ACS Applied Materials & Interfaces. 7(51), 28534–28544. http://dx.doi.org/10.1021/acsami.5b09919.
Luo, W., Zhu, L., Wang, N., Tang, H., Cao, M., She, Y., 2010. Efficient removal of organic pollutants with magnetic nanoscaled BiFeO3 as a reusable heterogeneous Fenton-like catalyst. Environmental Science & Technology. 44(5), 1786–1791. http://dx.doi.org/10.1021/es903390g.
Munoz, M., de Pedro, Z.M., Casas, J.A., Rodriguez, J.J., 2015. Preparation of magnetite-based catalysts and their application in heterogeneous Fenton oxidation: A review. Applied Catalysis B: Environmental. 176–177, 249–265. http://dx.doi.org/10.1016/j.apcatb.2015.04.003.
Nidheesh, P.V., 2015. Heterogeneous Fenton catalysts for the abatement of organic pollutants from aqueous solution: A review. RSC Advances. 5(51), 40552–40577. http://dx.doi.org/10.1039/C5RA02023A.
Pan, W., Zhang, G., Zheng, T., Wang, P., 2015. Degradation of p-nitrophenol using CuO/Al2O3 as a Fenton-like catalyst under microwave irradiation. RSC Advances. 5(34), 27043–27051. http://dx.doi.org/10.1039/C4RA14516J.
Pignatello, J.J., Oliveros, E., MacKay, A., 2006. Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry. Critical Reviews in Environmental Science and Technology. 36(1), 1–84. http://dx.doi.org/10.1080/10643380500326564.
Ramirez, J.H., Costa, C.A., Madeira, L.M., Mata, G., Vicente, M.A., Rojas-Cervantes, M.L., Martín-Aranda, R.M., 2007. Fenton-like oxidation of Orange II solutions using heterogeneous catalysts based on saponite clay. Applied Catalysis B: Environmental. 71(1), 44–56. http://dx.doi.org/10.1016/j.apcatb.2006.08.012.
Saputra, E., Muhammad, S., Sun, H., Ang, H.M., Tadé, M.O., Wang, S., 2013a. Different crystallographic one-dimensional MnO2 nanomaterials and their superior performance in catalytic phenol degradation. Environmental Science & Technology. 47(11), 5882–5887. http://dx.doi.org/10.1021/es400878c.
Saputra, E., Muhammad, S., Sun, H., Ang, H., Tadé, M.O., Wang, S., 2013b. A comparative study of spinel structured Mn3O4, Co3O4 and Fe3O4 nanoparticles in catalytic oxidation of phenolic contaminants in aqueous solutions. Journal of Colloid and Interface Science. 407, 467–473. http://dx.doi.org/10.1016/j.jcis.2013.06.061.
Segura, Y., Martínez, F., Melero, J.A., Molina, R., Chand, R., Bremner, D.H., 2012. Enhancement of the advanced Fenton process (Fe0/H2O2) by ultrasound for the mineralization of phenol. Applied Catalysis B: Environmental. 113–114, 100–106. http://dx.doi.org/10.1016/j.apcatb.2011.11.024.
Soon, A.N., Hameed, B.H., 2011, Heterogeneous catalytic treatment of synthetic dyes in aqueous media using Fenton and photo-assisted Fenton process. Desalination. 269(1–3), 1–16. http://dx.doi.org/10.1016/j.desal. 2010.11.002.
Wang, H., Zhao, Y., Su, Y., Li, T., Yao, M., Qin, C., 2017. Fenton-like degradation of 2,4-dichlorophenol using calcium peroxide particles: Performance and mechanisms. RSC Advances. 7(8), 4563–4571. http://dx.doi.org/10.1039/ C6RA26754H.
Wang, N., Zhu, L., Lei, M., She, Y., Cao, M., Tang, H., 2011. Ligand-induced drastic enhancement of catalytic activity of nano-BiFeO3 for oxidative degradation of bisphenol A. ACS Catalysis. 1(10), 1193–1202. http://dx.doi.org/10.1021/cs2002862.
Xing, S., Zhou, Z., Ma, Z., Wu, Y., 2011. Characterization and reactivity of Fe3O4/FeMnOx core/shell nanoparticles for methylene blue discoloration with H2O2. Applied Catalysis B: Environmental. 107(3–4), 386–392. http://dx.doi.org/10.1016/j.apcatb.2011.08.002.
Xu, L., Wang, J., 2011. A heterogeneous Fenton-like system with nanoparticulate zero-valent iron for removal of 4-chloro-3-methyl phenol. Journal of Hazardous Materials. 186(1), 256–264. http://dx.doi.org/10.1016/ j.jhazmat.2010.10.116.
Xu, L., Wang, J., 2012. Magnetic nanoscaled Fe3O4/CeO2 composite as an efficient Fenton-like heterogeneous catalyst for degradation of 4-chlorophenol. Environmental Science & Technology. 46(18), 10145–10153. http://dx.doi.org/10.1021/es300303f.
Yan, J., Lei, M., Zhu, L., Anjum, M.N., Zou, J., Tang, H., 2011. Degradation of sulfamonomethoxine with Fe3O4 magnetic nanoparticles as heterogeneous activator of persulfate. Journal of Hazardous Materials. 186(2–3), 1398–1404. http://dx.doi.org/10.1016/j.jhazmat.2010.12.017.
Yin, R., Guo, W., Zhou, X., Zheng, H., Du, J., Wu, Q., Chang, J., Ren, N., 2016. Enhanced sulfamethoxazole ozonation by noble metal-free catalysis based on magnetic Fe3O4 nanoparticles: Catalytic performance and degradation mechanism. RSC Advances. 6(23), 19265–19270. http://dx.doi.org/10.1039/C5RA25994K.
Zhang, G., Gao, Y., Zhang, Y., Guo, Y., 2010. Fe2O3-pillared rectorite as an efficient and stable Fenton-like heterogeneous catalyst for photodegradation of organic contaminants. Environmental Science & Technology. 44(16), 6384–6389. http://dx.doi.org/10.1021/es1011093.
Zhang, S., Zhao, X., Niu, H., Shi, Y., Cai, Y., Jiang, G., 2009. Superparamagnetic Fe3O4 nanoparticles as catalysts for the catalytic oxidation of phenolic and aniline compounds. Journal of Hazardous Materials. 167(1–3), 560–566. http://dx.doi.org/10.1016/j.jhazmat.2009.01.024.
Zhang, T., Zhu, H., Croué, J., 2013. Production of sulfate radical from peroxymonosulfate induced by a magnetically separable CuFe2O4 spinel in water: Efficiency, stability, and mechanism. Environmental Science & Technology. 47(6), 2784–2791. http://dx.doi.org/10.1021/es304721g.
Zhang, W., Yang, Z., Wang, X., Zhang, Y., Wen, X., Yang, S., 2006. Large-scale synthesis of β-MnO2 nanorods and their rapid and efficient catalytic oxidation of methylene blue dye. Catalysis Communications. 7(6), 408–412. http://dx.doi.org/10.1016/j.catcom.2005.12.008.
Zhao, Z., Liu, J., Cui, F., Feng, H., Zhang, L., 2012. One pot synthesis of tunable Fe3O4-MnO2 core-shell nanoplates and their applications for water purification. Journal of Materials Chemistry. 22(18), 9052–9057. http://dx.doi.org/10.1039/C2JM00153E.

Similar articles

Copyright by Water Science and Engineering