Water Science and Engineering 2017, 10(3) 197-208 DOI:   https://doi.org/10.1016/j.wse.2017.05.004  ISSN: 1674-2370 CN: 32-1785/TV

Current Issue | Archive | Search                                                            [Print]   [Close]
Information and Service
This Article
Supporting info
PDF(5510KB)
Reference
Service and feedback
Email this article to a colleague
Add to Bookshelf
Add to Citation Manager
Cite This Article
Email Alert
Keywords
Climate change impact
Hydrological modeling
HBV model
GCMs
Richmond River Catchment
Australia
Authors
PubMed

Assessment of future climate change impacts on hydrological behavior of Richmond River Catchment

Hashim Isam Jameel Al-Safi a,b,*, Priyantha Ranjan Sarukkalige a

a Department of Civil Engineering, Curtin University, Perth 6102, Australia
b Department of Irrigation and Drainage Techniques, Technical Institute of Shatrah, Southern Technical University, Dhi Qar, Iraq

Abstract

This study evaluated the impacts of future climate change on the hydrological response of the Richmond River Catchment in New South Wales (NSW), Australia, using the conceptual rainfall-runoff modeling approach (the Hydrologiska Byrans Vattenbalansavdelning (HBV) model). Daily observations of rainfall, temperature, and streamflow and long-term monthly mean potential evapotranspiration from the meteorological and hydrological stations within the catchment for the period of 1972—2014 were used to run, calibrate, and validate the HBV model prior to the streamflow prediction. Future climate signals of rainfall and temperature were extracted from a multi-model ensemble of seven global climate models (GCMs) of the Coupled Model Intercomparison Project Phase 3 (CMIP3) with three regional climate scenarios, A2, A1B, and B1. The calibrated HBV model was then forced with the ensemble mean of the downscaled daily rainfall and temperature to simulate daily future runoff at the catchment outlet for the early part (2016—2043), middle part (2044—2071), and late part (2072—2099) of the 21st century. All scenarios during the future periods present decreasing tendencies of the annual mean streamflow ranging between 1% and 24.3% as compared with the observed period. For the maximum and minimum flows, all scenarios during the early, middle, and late parts of the century revealed significant declining tendencies in the annual mean maximum and minimum streamflows, ranging between 30% and 44.4% relative to the observed period. These findings can assist the water managers and the community of the Richmond River Catchment in managing the usage of future water resources in a more sustainable way.

Keywords Climate change impact   Hydrological modeling   HBV model   GCMs   Richmond River Catchment   Australia  
Received 2016-04-11 Revised 2017-05-05 Online: 2017-07-30 
DOI: https://doi.org/10.1016/j.wse.2017.05.004
Fund:
Corresponding Authors: h.al-safi@postgrad.curtin.edu.au (Hashim Al-Safi).
Email: h.al-safi@postgrad.curtin.edu.au
About author:

References:

Abebe, N.A., Ogden, F.L., Pradhan, N.R., 2010. Sensitivity and uncertainty analysis of the conceptual HBV rainfall-runoff model: Implications for parameter estimation. Journal of Hydrology, 389(3-4), 301-310. http://dx.doi.org/10.1016/j.jhydrol.2010.06.007.
Al-Safi, H.I.J., Sarukkalige, P.R., 2017. Potential climate change impacts on the hydrological system of the Harvey River Catchment. International Journal of Environmental, Chemical, Ecological, Geological and Geophysical Engineering, 11(4), 296-306.
Bari, M.A., Amirthanathan, G.E., Timbal, B., 2010. Climate change and long term water availability in Western Australia: An experimental projection. In: Proceedings of International Congress on Environmental Modelling and Software. Melbourne, pp. 1-9.
Barron, O.V., Crosbie, R.S., Charles, S.P., Dawes, W.R., Ali, R., Evans, W.R., Cresswell, R., Pollock, D., Hodgson, G., Currie, D., et al., 2011. Climate Change Impact on Groundwater Resources in Australia: Summary Report. Commonwealth Scientific and Industrial Research Organization (CSIRO), Canberra.    
Bates, B., Kundzewicz, Z.W., Wu, S.H., Palutikof, J., 2008. Climate Change and Water. Intergovernmental Panel on Climate Change (IPCC), Geneva.
Bergstrom, S., 1995. The HBV-model. In: V.P. Singh ed., Computer Models for Watershed Hydrology, Water Resources Publications, Colorado. pp. 443-476.
Charles, S., Silberstein, R., Teng, J., Fu, G.B., Hodgson, G., Gabrovsek, C., Crute, J., Chiew, F., Smith, I., Kirono, D., et al., 2010. Climate Analyses for South-West Western Australia: A report to the Australian Government from the CSIRO South-West Western Australia Sustainable Yields Project. Commonwealth Scientific and Industrial Research Organization (CSIRO), Canberra.
Charles, S.P., Bates, B.C., Smith, I.N., Hughes, J.P., 2004. Statistical downscaling of daily precipitation from observed and modelled atmospheric fields. Hydrological Processes, 18(8), 1373-1394. http://dx.doi.org/10.1002/hyp.1418.
Chartres, C., Varma, S., 2010. Out of Water: From Abundance to Scarcity and How to Solve the World’s Water Problems. Financial Times Press, Upper Saddle River, New Jersey.
Cheng, L., Zhang, L., Wang, Y.P., Yu, Q., Eamus, D., O’Grady, A., 2014. Impacts of elevated CO2, climate change and their interactions on water budgets in four different catchments in Australia. Journal of Hydrology, 519(B), 1350-1361. http://dx.doi.org/10.1016/j.jhydrol.2014.09.020.
Chiew, F.H.S., Whetton, P.H., McMahon, T.A., Pittock, A.B., 1995. Simulation of the impacts of climate change on runoff and soil moisture in Australian catchments. Journal of Hydrology, 167(1-4), 121-147. https://dx.doi.org/10.1016/0022-1694(94)02649-V.
Chiew, F.H.S., Teng, J., Vaze, J., Post, D.A., Perraud, J.M., Kirono, D.G.C., Viney, N.R., 2009. Estimating climate change impact on runoff across southeast Australia: Method, results, and implications of the modelling method. Water Resources Research, 45(10), W10414. http://dx.doi.org/10.1029/2008WR007338.
Commonwealth Scientific and Industrial Research Organization (CSIRO) and Bureau of Meteorology (BOM), 2007. Climate Change in Australia. Melbourne.
Commonwealth Scientific and Industrial Research Organization (CSIRO), 2009. Surface Water Yields in South-West Western Australia: A Report to the Australian Government from the CSIRO South-West Western Australia Sustainable Yields Project. CSIRO, Canberra.
Commonwealth Scientific and Industrial Research Organization (CSIRO) and Bureau of Meteorology (BOM), 2015. Climate Change in Australia Information for Australia’s Natural Resource Management Regions CSIRO and BOM, Canberra.
Driessen, T.L.A., Hurkmans, R.T.W.L., Terink, W., Hazenberg, P., Torfs, P.J.J.F., Uijlenhoet, R., 2010. The hydrological response of the Ourthe catchment to climate change as modelled by the HBV model. Hydrology and Earth System Sciences, 14(4), 651-665. http://dx.doi.org/10.5194/hess-14-651-2010.
Doorenbos, J., Pruitt, W.O., 1977. Guidelines for predicting crop water requirements. FAO Irrigation and Drainage Paper, (No. C 25366). FAO, Roma.
Fowler, H.J., Blenkinsop, S., Tebaldi, C., 2007. Linking climate change modelling to impacts studies: Recent advances in downscaling techniques for hydrological modelling. International Journal of Climatology, 27(12), 1547-1578. http://dx.doi.org/10.1002/joc.1556.
Fu, G., Charles, S.P., Chiew, F.H.S., 2007. A two-parameter climate elasticity of streamflow index to assess climate change effects on annual streamflow. Water Resources Research, 43(11). https://dx.doi.org/10.1029/2007WR005890.
Gordon, H.B., O'Farrell, S.P., 1997. Transient climate change in the CSIRO coupled model with dynamic sea ice. Monthly Weather Review, 125(5), 875-908. https://dx.doi.org/10.1175/1520-0493(1997)125<0875:TCCITC>2.0.CO;2.
Gunawardhana, L.N., Al-Rawas, G.A., Kazama, S., Al-Najar, K.A., 2015. Assessment of future variability in extreme precipitation and the potential effects on the wadi flow regime. Environmental Monitoring and Assessment, 187(10), 1-19. https://dx.dio.org/10.1007/s10661-015-4851-5.
Hennessy, K.B., Fitzharris, B., Bates, B.C., Harvey, N., Howden, M., Hughes, L., Warrick, R., 2007. Australia and New Zealand. In: Climate Change 2007: Impacts, Adaptation and Vulnerability. Cambridge University Press, Cambridge, pp. 507-540.
Intergovernmental Panel on Climate Change (IPCC), 2000. Special Report on Emission Scenarios. Cambridge University Press, Cambridge.
Islam, S.A., Bari, M.A., Anwar, A.H.M.F., 2014. Hydrologic impact of climate change on Murray Hotham Catchment of Western Australia: A projection of rainfall-runoff for future water resources planning. Hydrology and Earth System Sciences 18, 3591-3614, https://dx.doi.org/10.5194/hess-18-3591-2014.
Kundzewicz, Z.W., Mata, L.J., Arnell, N.W., Doll, P., Kabat, P., Jimenez, B., Miller, K.A., Oki, T., Sen, Z., Shiklomanov, I., 2007. Freshwater resources and their management. In: Climate Change 2007: Impacts, Adaptation and Vulnerability. Cambridge University Press, Cambridge, pp. 173-210.
Liden, R., Harlin, J., 2000. Analysis of conceptual rainfall-runoff modelling performance in different climates. Journal of Hydrology, 238(3-4), 231-247. http://dx.doi.org/10.1016/S0022-1694(00)00330-9.
Lindstrom, G., Johansson, B., Persson, M., Gardelin, M., Bergström, S., 1997. Development and test of the distributed HBV-96 hydrological model. Journal of Hydrology, 201(1-4), 272-288. http://dx.doi.org/10.1016/S0022-1694(97)00041-3.
McFarlane, D., Stone, R., Martens, S., Thomas, J., Silberstein, R., Ali, R., Hodgson, G., 2012. Climate change impacts on water yields and demands in south-western Australia. Journal of Hydrology, 475, 488-498. http://dx.doi.org/10.1016/j.jhydrol.2012.05.038.
Nash, J.E., Sutcliffe, J.V., 1970. River flow forecasting through conceptual models, part I: A discussion of principles. Journal of Hydrology, 10(3), 282-290. http://dx.doi.org/10.1016/0022-1694(70)90255-6.
Nunez, M., McGregor, J.L., 2007. Modelling future water environments of Tasmania, Australia. Climate Research: Interactions of Climate with Organisms, Ecosystems, and Human Societies, 34(1), 25-37. http://dx.doi.org/10.3354/cr034025.
Osman, Y., Al-Ansari, N., Abdellatif, M., Aljawad, S.B., Knutsson, S., 2014. Expected future precipitation in central Iraq using LARS-WG stochastic weather generator. Engineering, 6(13), 948-959. http://dx.doi.org/10.4236/eng.2014.613086.
Palutikof, J.P., Goodess, C.M., Guo, X., 1994. Climate change, potential evapotranspiration and moisture availability in the Mediterranean Basin. International Journal of Climatology, 14(8), 853-869. http://dx.doi.org/10.1002/joc.3370140804.
Pittock, B., 2003. Climate Change: An Australian Guide to the Science and Potential Impacts. The Australian Greenhouse Office, Canberra.
Praskievicz, S., Chang, H., 2009. A review of hydrological modelling of basin-scale climate change and urban development impacts. Progress in Physical Geography, 33(5), 650-671. http://dx.doi.org/10.1177/0309133309348098.
Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Miller, H.L., 2007. Climate Change 2007: The Physical Science Basis. Cambridge University Press, Cambridge.  
Semenov, M.A., Barrow, E.M., 1997. Use of a stochastic weather generator in the development of climate change scenarios. Climatic Change, 35(4), 397-414. http://dx.doi.org/10.1023/A:1005342632279.
Semenov, M.A., Barrow, E.M., 2002. A Stochastic Weather Generator for Use in Climate Impact Studies: User Manual. Herts.
Semenov, M.A., Stratonovitch, P., 2010. Use of multi-model ensembles from global climate models for assessment of climate change impacts. Climate Research, 41(1), 1-14. http://dx.doi.org/10.3354/cr00836.
Silberstein, R.P., Aryal, S., Durrant, J., Pearcey, M., Braccia, M., Charles, S.P., Boniecka, L., Hodgson, G.A., Bari, M.A., Viney, N.R., et al., 2012. Climate change and runoff in south-western Australia. Journal of Hydrology, 475, 441-455. http://dx.doi.org/10.1016/j.jhydrol.2012.02.009.
Swedish Meteorological and Hydrological Institute (SMHI), 2012. Integrated Hydrological Modelling System (IHMS), User Manual, Version 6.3.
Teng, J., Vaze, J., Chiew, F.H.S., Wang, B., Perraud, J.M., 2012a. Estimating the relative uncertainties sourced from GCMs and hydrological models in modeling climate change impact on runoff. Journal of Hydrometeorology, 13(1), 122-139. http://dx.doi.org/10.1175/JHM-D-11-058.1.
Teng, J., Chiew, F.H.S., Vaze, J., Marvanek, S., Kirono, D.G.C., 2012b. Estimation of climate change impact on mean annual runoff across continental Australia using Budyko and Fu equations and hydrological models. Journal of Hydrometeorology, 13(3), 1094-1106. http://dx.doi.org/10.1175/JHM-D-11-097.1.
Timbal, B., Jones, D., 2008. Future projections of winter rainfall in southeast Australia using a statistical downscaling technique. Climatic Change, 86(1-2), 165-187. http://dx.doi.org/10.1007/s10584-007-9279-7.
Trewin, B., Jones, D., 2004. Notable recent rainfall anomalies in Australia. Climate and water. In: Proceedings of the 16th Australia New Zealand Climate Forum. p. 100.
Vaze, J., Post, D.A., Chiew, F.H.A.S., Perraud, J.-M., Viney, N.R., Teng, J., 2010. Climate non-stationarity:  Validity of calibrated rainfall-runoff models for use in climate change studies. Journal of Hydrology, 394(3-4), 447-457. http://dx.doi.org/10.1016/j.jhydrol.2010.09.018.
Vaze, J., Teng, J., 2011. Future climate and runoff projections across New South Wales, Australia: Results and practical applications. Hydrological Processes, 25(1), 18-35. http://dx.doi.org/10.1002/hyp.7812.
Vaze, J., Teng, J., Cheiw, F.H.S., 2011. Assessment of GCM simulations of annual and seasonal rainfall and daily rainfall distribution across south-east Australia. Hydrological Processes, 25(9), 1486–1497. http://dx.doi.org/10.1002/hyp.7916.
Whitehead, P.G., Wilby, R.L., Battarbee, R.W., Kernan, M., Wade, A.J., 2009. A review of the potential impacts of climate change on surface water quality. Hydrological Sciences Journal, 54(1), 101-123. http://dx.doi.org/10.1623/hysj.54.1.101.
Wilks, D.S., Wilby, R.L., 1999. The weather generation game: A review of stochastic weather models. Progress in Physical Geography, 23(3), 329-357. http://dx.doi.org/10.1177/030913339902300302.
Zorita, E., Von Storch, H., 1999. The analog method as a simple statistical downscaling technique: Comparison with more complicated methods. Journal of Climate, 12(8), 2474-2489. http://dx.doi.org/10.1175/1520-0442(1999)012<2474:TAMAAS>2.0.CO;2.

Similar articles

Copyright by Water Science and Engineering